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Abstract
We consider the problem of existence of certain symmetrical solutions of the
Stokes equation on a three-dimensional manifold M with a general metric
possessing symmetry. These solutions correspond to unidirectional flows.
We have been able to determine necessary and sufficient conditions for their
existence. Symmetric unidirectional flows are fundamental for deducing the
so-called Darcy’s law, which is the law governing fluid flow in a Hele–Shaw cell
embedded in the environment M. Our main interest is to depart from the usual,
flat background environment and consider the possibility of an environment
of arbitrary constant curvature K in which a cell is embedded. We generalize
Darcy’s law for particular models of such spaces obtained from R

3 with a
conformal metric. We employ the calculus of differential forms for a simpler
and more elegant approach to the problems discussed.

PACS numbers: 02.40.−k, 47.17.+e, 62.10.+s

1. Introduction

Pattern formation is a very exciting and fast growing area in physics and related sciences
[1–5]. The Saffman–Taylor problem [6] is one of the most studied among the systems
presenting the formation and evolution of patterned structures. It studies the hydrodynamic
instabilities at the interface separating two immiscible fluids confined between two parallel
flat plates, the Hele–Shaw cell. In such a configuration, when a low-viscosity fluid displaces a
higher viscosity fluid, the interface becomes unstable, deforms and forms fingers [7–10] (see
figure 1). The key point in the study of such patterns is Darcy’s law, the two-dimensional
reduction of the Navier–Stokes equation incorporating the boundary conditions (no-slip) and
the mass conservation law (continuity equation). Curiously, Darcy’s law, which describes
the dynamic behaviour for flow in flat Hele–Shaw cells, is actually the very same equation
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Figure 1. Schematic configuration of the radial flow in a flat Hele–Shaw cell. The less viscous
fluid (dark fluid) is injected into the Hele–Shaw cell, previously filled with the more viscous
fluid. The dashed line represents the initial unperturbed circular interface (radius R) and the solid
undulated curve depicts the deformed fluid–fluid interface at later times. The thickness of the cell
is denoted by b. Using the cylindrical coordinate system (x1, x2, x3) = (z, φ, ρ), we assume that
the fluid motion occurs along the radial direction (x3 = ρ), while the transversal direction x1 is
simultaneously perpendicular to both the upper (z = b) and the lower (z = 0) plates.

used in the description of flow in porous media [6–9]. This happens despite the fact that
the latter is indeed a highly non-flat environment, characterized by voids and curved internal
surfaces. The question arises as to whether there exists a deeper connection between the
fingering phenomena and the geometric and topological features of the substrate on which the
flow takes place.

Considering the wealth of interesting phenomena already found in the flat version of the
Saffman–Taylor problem, there is an obvious scientific interest in the study of fingering in
curved Hele–Shaw cells. On a more practical level, the curved problem may have applications
in a number of industrial and manufacturing processes involving the filling of a thin cavity
between two walls of a given shape with fluid. These processes range through pressure
moulding of molten metals and polymer materials [11], and formation of coating defects in
drying paint thin films [12]. Another potentially promising system refers to recent microfluidic
applications, where the fluid is confined to flow in tiny microchannels of various shapes [13].
Generalizations of the standard case of flat Hele–Shaw flows are also useful and of interest in
the treatment of foams in curved surfaces [14–16].

Motivated by such scientific and practical aspects, researchers started to investigate the
impact of cell geometry and topology on the Saffman–Taylor problem [17–20]. Spherical
[17, 18], cylindrical [19] and conical [20] geometries have been studied in this context, yielding
substantial information connecting relevant fingering mechanisms (finger competition and
finger tip splitting) to the cell’s geometric and topological features. A schematic representation
of some curved Hele–Shaw cells is depicted in figure 2: spherical (top), cylindrical (centre),
and conical (bottom). In spherical cells [17], it has been shown that the cell’s Gaussian
curvature regulates finger tip-splitting behaviour. In contrast, the relevant control parameter in
cylindrical cells [19] is the mean curvature, which determines the strength of the competition
among the fingers. Topology rather than geometry seems to be the key factor in determining
the shape of the fluid–fluid interface in conical cells [20], where the emerging patterns are
significantly sensitive to variations in the conical cell’s opening angle. Here, our aim is
to provide the means of further generalizations of the Saffman–Taylor problem involving
other geometries, opening the possibility of investigating how aspects related to the curved
nature of the Hele–Shaw cell may determine the morphology and evolution of the fingering
structures.



Symmetric flows and Darcy’s law in curved spaces 1621

b

a

x
x

2

3

x1

a

b

φ

x
x3

1

x2

b

2γ

1x

x3
x2

Figure 2. Illustrative examples of curved Hele–Shaw cells. Similarly to figure 1, here the
dark fluid is less viscous, the solid undulated curve represents the deformed fluid–fluid interface
and b denotes the cell thickness. In the spherical cell (top) of inner radius a we adopt the
coordinates (x1, x2, x3) = (r, φ, θ). For the cylindrical cell (centre) of inner radius a, we
have that (x1, x2, x3) = (ρ, φ, z). In the conical cell (bottom) of opening angle 2γ , we use
(x1, x2, x3) = (ξ, φ, ρ). Note that throughout this work (see section 2 for details) we assume that
the fluid motion is in the direction x3, while the transversal direction to the plates is defined as x1.

In this work, we present a systematic and rigorous derivation of Darcy’s law by averaging
the Stokes and continuity equations for fluid flow in curved spaces, and find the conditions
under which a unidirectional symmetric flow exists for more general non-flat Hele–Shaw
cells. We allow the ordinary three-dimensional space R

3 to acquire a symmetrical Riemannian
metric [21], then look for the conditions wherein Navier–Stokes equation in this space becomes
separable. An important case where this occurs is that of a separable metric. For this case,
we demonstrate that symmetric unidirectional flows are possible. Another important case is
that of R

3 endowed with a conformal metric. For this case, we derive Darcy’s law even in the
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situations where symmetric unidirectional flows do not exist. The case of a pseudo-Riemannian
metric (Minkowski) is also approached for it supports surfaces of constant negative curvature
(pseudo-spheres or Lobachevsky planes), which have been partially studied in [17]. The
calculus of differential forms [22] is used throughout the paper for a simpler and more elegant
way of presenting the problem.

Suppose M is a smooth orientable manifold of dimension 3 endowed with a metric locally
given by

ds2 = E2
1 dx2

1 + E2
2 dx2

2 + E2
3 dx2

3 , (1)

where Ei are the smooth functions of the coordinates xi, i = 1, 2, 3. Let (, ) be the inner
product induced by this metric.

The motion of a fluid in M is described by a vector (velocity) field �V : M → T M , where
T M denotes the tangent bundle to M. There exists a canonical correspondence between T M

and the cotangent bundle T M∗ = ∧1
(T M∗), which is defined using the metric (1): to each

tangent vector �V ∈ T M there corresponds a unique differential 1-form ω �V ∈ ∧1
(T M∗) such

that ω �V ( �W) = ( �V , �W). Given an orthonormal basis β = {�e1, �e2, �e3} of T M , we define the
corresponding basis of

∧1
(T M∗) as β∗ = {

ω�e1 , ω�e2 , ω�e3

}
. The basis β∗ is orthonormal in the

inner product 〈, 〉 induced by the dual metric

(ds∗)2 = (
1
/
E2

1

)
dx2

1 +
(
1
/
E2

2

)
dx2

2 +
(
1
/
E2

3

)
dx2

3 . (2)

Fluid motion is governed by the Navier–Stokes equation [23, 24]

�

[
∂ �V
∂t

+ ( �V ,∇) �V
]

= −grad(p) + η� �V ,

where � denotes the fluid density, η represents the fluid viscosity and p is the hydrodynamic
pressure. If the flow is incompressible, �V must also satisfy the equation of continuity

div �V = 0.

In many applications, such as the study of Hele–Shaw flows, one assumes a steady flow
and neglects the so-called inertial terms on the left-hand side of the Navier–Stokes equation.
Under these hypotheses, Navier–Stokes equation reduces to Stokes equation. Using the
correspondence between vector fields and differential forms, Stokes equation and the equation
of continuity translate, respectively, into

−ωgrad(p) + η�ω �V = 0, (3)

δω �V = 0, (4)

where � is the Laplace operator

−(dδ + δ d).

We recall that the operators d and δ are the exterior differential and codifferential, respectively.
The codifferential is an operator from

∧k
(T M∗) to

∧k−1
(T M∗) defined by

δ = (−1)k ∗ d∗,

where ∗ :
∧k

(T M∗) → ∧3−k
(T M∗) is the Hodge star operator.

Darcy’s law is obtained by averaging �V in the normal direction with respect to a given
two-dimensional smooth submanifold N of M. It provides a reasonable description of the
fluid motion between two non-intersecting neighbouring copies of N. Generally, such pair of
submanifolds is said to form a Hele–Shaw cell. Of particular interest, due to their simplicity, are
the cells formed by level sets {xi = constant} in a local chart of M. All examples of Hele–Shaw
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cells studied so far (planar, cylindrical, conical, spherical) are formed by such submanifolds.
One procedure for obtaining Darcy’s law consists of considering a one-parameter family of
velocity fields which corresponds to what we called symmetric unidirectional flows. When
such family exists and its profile function (denoted in this paper by g) is non-constant, a simple
method provides a quick deduction of Darcy’s law. The existence of symmetric unidirectional
flows is, therefore, a very important issue. One of our main goals is to attempt to overcome
the non-existence of such flows in a perturbative way.

The paper is organized as follows. In section 2, we look for solutions of Stokes equations
for a symmetric unidirectional flow and analyse under which conditions the equation is
separable. In section 3, we find the conditions for the existence of symmetric flows in curved
space; and in section 4, we study the solutions of Stokes equation (3) and deduce Darcy’s law
for the following systems of the Hele–Shaw type:

(1) Two nearby pseudo-spheres in Minkowski’s 3-space.
(2) Two parallel planes in R

3 with a conformal metric.

Section 5 summarizes our main results and conclusions.

2. Solution of Stokes equation for a symmetric unidirectional flow

We study the solutions of Stokes equation in M under the following assumptions:

(A1) The level sets Sa = {x1 = a} and Sa+b = {x1 = a + b} are two smooth (non-intersecting)
surfaces. The vector field �e1 is normal to both Sa and Sa+b.

(A2) The coefficients of the metric (1) of M do not depend on x2.
(A3) Fluid motion is in the direction of x3 and the velocity field does not depend on x2. We

refer to such motion as a symmetric unidirectional flow.

A velocity field satisfying assumption (A3) has the form

�V = V3(x1, x3)�e3.

Using the correspondence with 1-forms, we obtain

ω �V = V3ω�e3 = (V3E3) dx3.

The equation of continuity then writes

δω �V = −∗ d ∗ (V3E3 dx3) = −∗ d(V3E1 dx1 ∧ E2 dx2)

= −∗
(

∂(V3E1E2)

∂x3
dx1 ∧ dx2 ∧ dx3

)
= 0.

Thus, we have ∂(E1E2V3)

∂x3
= 0, which implies that

E1E2V3 = g(x1) (5)

for some function g which remains to be determined.
Using the equation of continuity, the Laplacian of ω �V reduces to −δ dω �V , i.e.,

−∗ d ∗ d(V3E3 dx3) = −∗ d ∗
(

∂(V3E3)

∂x1
dx1 ∧ dx3

)

= −∗ d

(
− E2

E1E3

∂(V3E3)

∂x1
dx2

)
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which equals

∗
(

∂

∂x1

(
E2

E1E3

∂(V3E3)

∂x1

)
dx1 ∧ dx2 − ∂

∂x3

(
E2

E1E3

∂(V3E3)

∂x1

)
dx2 ∧ dx3

)

= − E1

E2E3

∂

∂x3

(
E2

E1E3

∂(V3E3)

∂x1

)
dx1 +

E3

E1E2

∂

∂x1

(
E2

E1E3

∂(V3E3)

∂x1

)
dx3.

Recall that, by definition of the gradient,

ωgrad(p) = dp = ∂p

∂x1
dx1 +

∂p

∂x3
dx3.

Thus, from the expression for the Laplacian of ω �V deduced above, Stokes equation is equivalent
to the following system of equations:

− ∂p

∂x1
− η

E1

E2E3

∂

∂x3

(
E2

E1E3

∂(V3E3)

∂x1

)
= 0, (6)

− ∂p

∂x3
+ η

E3

E1E2

∂

∂x1

(
E2

E1E3

∂(V3E3)

∂x1

)
= 0. (7)

The unknown function g(x1) in (5) must be such that the system above is satisfied for some
smooth function p(x1, x3). If we apply the operator d to both sides of Stokes equation

−dp + η�ω �V = 0

we obtain, since η 	= 0,

d�ω �V = 0

because d2 = 0. Hence, the (local) existence of p satisfying Stokes equation is guaranteed if
g solves the equation

d�ω �V = −dδ d

(
gE3

E1E2

)
= 0,

or, in coordinates, the equation

∂

∂x3

(
E1

E2E3

∂

∂x3

(
E2

E1E3

∂
(

gE3

E1E2

)
∂x1

))
= ∂

∂x1

(
E3

E1E2

∂

∂x1

(
E2

E1E3

∂
(

gE3

E1E2

)
∂x1

))
(8)

which is a linear ordinary differential equation of third order whose coefficients are functions of
the metric coefficients. Thus, the existence of non-constant solutions of equation (8) depends
on the metric. From now on we will only consider non-constant solutions of (8).

2.1. Separable Stokes equation

A great simplification is achieved when the metric is such that Stokes equation is reduced to
a single separable differential equation. It turns out that for some important examples Stokes
equation reduces to a separable equation (7). This fact motivates the definition below.

Definition 2.1. We say that Stokes equation is separable if the system of differential
equations (6) and (7) reduces to a separable equation (7).

The following definition will also be useful in our discussion.

Definition 2.2. A function f (x1, x3) is separable if it can be written as a product of a function
of x1 and a function of x3.
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Let us suppose that

∂

∂x3

(
E2

E1E3

∂

∂x1

(
gE3

E1E2

))
= 0, (9)

or, equivalently

E2

E1E3

∂

∂x1

(
gE3

E1E2

)
= C(x1), (10)

for some function C.
Multiplying both sides of the above equation by g(x1) and denoting g

E1
by G, we obtain

G

(
E2

E3

)
∂

∂x1

(
G

E3

E2

)
= Cg.

Dividing both sides by G2, we get

∂

∂x1
ln

(
GE3

E2

)
= Cg

G2
⇔ ln

(
GE3

E2

)
=

∫
Cg

G2
dx1 + C̃(x3),

which in terms of g is

ln

(
gE3

E1E2

)
=

∫
CE2

1

g
dx1 + C̃ ⇔ E3

E1E2
=

exp(C̃) exp
( ∫ CE2

1
g

dx1
)

g
.

The last equation above shows that equation (10) holds as long as the ratio E3
E1E2

is the product
of a function of x1, a function of x3 and a function of x1, x3.

Proposition 2.1. Assume that E1 = E1(x1). Then, Stokes equation is separable if and only if
the ratio E3

E2
is separable.

Proof. If E1 = E1(x1) and if Stokes equation is separable in the sense of definition 2.1, then
from equation (9)

E3

E1E2
=

exp(C̃) exp
( ∫ CE2

1
g

dx1
)

g
⇒ E3

E2
= H(x1)H̃ (x3)

for some functions H, H̃ .
On the other hand, if E3

E2
= H(x1)H̃ (x3) then (9) holds and equation (7) becomes

− ∂p

∂x3
+ ηH(x1)H̃ (x3)

∂

∂x1

(
E2

E1E3

∂(V3E3)

∂x1

)
= 0.

After dividing by H̃ (x3) and moving the second term to the right-hand side, we have

1

H̃

∂p

∂x3
= ηH

∂

∂x1

(
E2

E1E3

∂

∂x1

(
gE3

E1E2

))
= ηH

∂

∂x1

(
1

E1H

∂

∂x1

(
gH

E1

))
.

Clearly each side of the above equation depends on a single variable. �

We now discuss a few examples.

Example 1. Let M = R
3 with the Euclidean metric in cylindrical coordinates (x1, x2, x3) =

(ρ, φ, z). We have

E1 = E3 = 1, E2 = ρ.
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From proposition 2.1, it follows that Stokes equation for a flow in the z-direction reduces to
equation (7)

∂p

∂z
= η

ρ

∂

∂ρ

(
ρ

∂

∂ρ

(
g

ρ

))
. (11)

If, instead, we consider flows in the ρ-direction (radial flow) which are φ-symmetric, then
Stokes equation is

1

ρ

∂p

∂ρ
= ηg′′. (12)

Finally, for z-symmetric flows in the φ-direction, we have

∂p

∂φ
= ηρ

∂

∂ρ

(
1

ρ

∂

∂ρ
(ρg)

)
. (13)

Example 2. Let M = R
3 with the Euclidean metric in spherical coordinates (x1, x2, x3) =

(r, φ, θ). In this case

E1 = 1, E2 = r sin θ, E3 = r.

Proposition 2.1 implies that Stokes equation for polar flows (that is, along the θ -direction)
reduces to

sin θ
∂p

∂θ
= ηg′′. (14)

Example 3. Our arguments so far apply to semi-Riemannian metrics just as well. Let M = R
3

with the Minkowski metric

ds2
M = −dr2 + r2 sinh2 τ dφ2 + r2 dτ 2

in pseudo-spherical coordinates (x1, x2, x3) = (r, φ, τ ). The analogous of proposition 2.1 for
a semi-Riemannian metric implies that Stokes equation reduces to

sinh τ
∂p

∂τ
= ηg′′. (15)

2.2. An example of non-separable Stokes equation: flow in R
3 with a conformal metric

Suppose now M is R
3 endowed with the metric

ds2 = f 2(x3)
(
dx2

1 + dx2
2 + dx2

3

)
.

It turns out that such choices of M and ds2 provide examples of 3-spaces of arbitrary
constant curvature [21]. Indeed, let K be a non-negative real number. If f (x3) = 1

/(
Kx2

3 +
1/4

)
, a direct calculations reveals that M has curvature K. For f (x3) = 1/(1 +

√
Kx3), we

have that M̃ = {(x1, x2, x3) ∈ M/x3 > 0}, the open half-space, has curvature −K .
Stokes equations (6) and (7) are

∂p

∂x1
= η

2g′f ′

f 4
, (16)

∂p

∂x3
= η

g′′

f 3
. (17)

If we apply condition (8) for the existence of functions g, p satisfying the above equations,
we obtain (

−2
f ′

f 4

)′
g′ = g′′′

f 3
,
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which is a separable equation. The above differential equation has a non-trivial solution if and
only if f 3

(
f ′
f 4

)′
is constant, i.e., the conformal factor must satisfy a differential equation of

the form

f 3

(
f ′

f 4

)′
= k̃1 ⇒ −2

3
f 3

(
1

f 3

)′′
= k1,

By setting y = 1
f 3 , we obtain the equation y ′′ = − 3

2k1y, whose solutions are well known for

any values of the constant k1. For each solution y = y(x3), there corresponds an f = y−1/3

and a g which is a solution of

g′′′ + k1g
′ = 0. (18)

Thus, a restriction on the metric needs to be imposed in order to have non-trivial solutions
of Stokes equation. Unfortunately, this restriction applies to the choices of conformal factors
which give constant curvature. In particular, we have that symmetric unidirectional flows are
not possible in hyperbolic 3-space.

3. The existence of symmetric unidirectional flows

Let us address the fundamental question of the existence of solutions of equation (8).
Recall that the existence of unidirectional flows depends on the existence of a solution

g = g(x1) of equation (8). As we mentioned earlier, equation (8) is a third-order linear
ordinary differential equation. It can be put in the form

g′′′ − A(x1, x3)g
′′ − B(x1, x3)g

′ − C(x1, x3)g = 0.

We will show that a differential equation such as this one can only have a solution if the
coefficients A,B,C do not depend on x3. We will need the following:

Lemma 3.1. If the linear differential equation

g′′ − A(x1, x3)g
′ − B(x1, x3)g = 0

has a solution, then the coefficients A and B do not depend on x3.

Proof. A solution of the equation in the statement satisfies the linear system

Ag′ + Bg = g′′ A3g
′ + B3g = 0,

where the subscript indicates partial derivative with respect to x3. Thus the 2 × 2 determinant∣∣∣∣ A B

A3 B3

∣∣∣∣
is zero. But from A3g

′ + B3g = 0, we have that A3 is equal to a function µ of x1 times B3.
Hence, we must have A = µB. So,

g′′ = B(µg′ + g).

Therefore, B = B(x1) and A = A(x1), as we wanted to prove. �

Lemma 3.2. If the linear differential equation

g′′′ − A(x1, x3)g
′′ − B(x1, x3)g

′ − C(x1, x3)g = 0

has a solution, then the coefficients A,B and C do not depend on x3.

Proof. Consider the linear system

Ag′′ + Bg′ + Cg = g′′′, (19)
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A3g
′′ + B3g

′ + C3g = 0. (20)

From the previous lemma, equation (20) implies that there exist functions µ and ν of x1 such
that B3 = µA3 and C3 = νA3. Integrating these equations with respect to x3, we obtain

B = µA + γ (x1), C = νA + �(x1).

Substituting into equation (19), we obtain

A(g′′ + µg′ + νg) + (γg′ + �g) = g′′′.

Therefore, A is a function of x1 only, and the same must hold for B and C. �

Lemma 3.2 provides necessary conditions for the existence of symmetrical unidirectional
flows on a 3-manifold M with a metric ds2 whose coefficients are E1, E2 and E3. For instance,
the coefficient of g′′ in equation (8) is

A(x1, x3) = − ∂

∂x1
ln

(
E3

E3
1E2

)
.

Lemma 3.2 says that the right-hand side is a function of x1. Hence, a quick calculation shows
that E3

E3
1E2

must be separable. We have proved the

Proposition 3.1. A necessary condition for the existence of a solution of the differential
equation (8) is that E3

E3
1E2

is separable.

Propositions 2.1 and 3.1 imply the main result of this section.

Theorem 3.1. Suppose E1 = E1(x1). If Stokes equation has a solution then E3
E2

is separable.

Conversely, if E3
E2

is separable, then Stokes equation in the metric with coefficients E1, E2 and
E3 is separable and hence it has a solution.

Theorem 3.1 implies the impossibility of symmetric unidirectional flows in conical or
toroidal geometries.

Example 4. Let M be an open region of R
3 endowed with the Euclidean metric in conical

coordinates (x1, x2, x3) = (ξ, φ, ρ)

ds2 = dξ 2 + (ξ cos γ + ρ sin γ )2 dφ2 + dρ2,

where 0 < γ < π
2 is a constant (the half-opening angle of the conical cell). Since E1 = 1 and

E3

E2
= 1

ξ cos γ + ρ sin γ

is not separable, we have that equation (8) has no solution.

Example 5. Let M be an open region of R
3 endowed with the Euclidean metric in toroidal

coordinates (x1, x2, x3) = (r, φ, θ)

ds2 = dr2 + (a + r cos θ)2 dφ2 + r2 dθ2,

where a > 0 is constant. Since E1 = 1 and
E3

E2
= r

a + r cos θ

is not separable, it follows that (8) has no solution.

If E1 depends on x3, it is possible to have solvable Stokes equations which are not
separable, as we saw in subsection 2.2.
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Remark 3.2. Theorem 3.1 imposes a serious restriction on an argument that has been used
to deduce Darcy’s law for Hele–Shaw systems in curved geometries. In the next section,
we discuss a method which provides a perturbed form of Darcy’s law which is valid for the
example in subsection 2.2, somehow bypassing the obstacle imposed by the non-existence of
a symmetric unidirectional flow.

4. Darcy’s law

We now deduce Darcy’s law for a separable and a non-separable example of Hele–Shaw
systems.

4.1. Pseudo-spheres in Minkowski space

This example well illustrates the method of deduction of Darcy’s law for separable systems.
Recall that x1 = r, x2 = φ and x3 = τ are the pseudo-spherical coordinates of M defined

in example 3.
Consider the pseudo-spheres Sa = {r = a} and Sa+b = {r = a + b} in M. A curve going

from P ∈ Sa to Sa+b in the r-direction is given by a path λ : [0, 1] → M , where

r(t) = r(P ) + tb, φ(t) = φ(P ), τ (t) = τ(P ).

We average the function Vτ (r, τ ) along the path λ.
In order to solve equation (15), we set both sides equal to a constant C. If we impose the

non-slip boundary conditions g(a) = g(a + b) = 0, then we must have

g(r) = − C

2η
(r − a)(a + b − r). (21)

The average of Vτ along λ is

V τ =
∫
λ
Vτ ds∫
λ

ds
,

where ds is the element of arc-length of λ. We have that

V τ =
∫ 1

0 Vτ (λ(t))ib dt∫ 1
0 ib dt

= 1

b sinh τ

∫ a+b

a

g(r)

r
dr.

Using expression (21) for g, it follows that

V τ = − 1

2bη

(∫ a+b

a

(r − a)(a + b − r)

r
dr

)
∂p

∂τ
.

Therefore, Darcy’s law for two pseudo-spheres Sa, Sa+b in Minkowski’s 3-space is

V τ = −b2F
(

b
a

)
12η

(grad p)τ , (22)

where F
(

b
a

) = F(1, 2; 4;−b/a) is a hypergeometric function. For comparison, see the
appendix of [17].
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4.2. Parallel planes in R
3 with a conformal metric

We return to the example discussed in subsection (2.2).
Let us consider the planes Sa = {x1 = a} and Sa+b = {x1 = a + b}. We define a curve

λ : [0, 1] → R
3 by

x1(t) = x1(P ) + tb, x2(t) = x2(P ), x3(t) = x3(P ),

where P ∈ Sa . In order to simplify our calculations, we will assume that a = 0 and b > 0.
The average of a function h : R

3 → R along λ is

h =
∫
λ
h ds∫

λ
ds

=
∫ 1

0 h(λ(t))f (x3(P )) dt∫ 1
0 f (x3(P ))b dt

= 1

b

∫ a+b

a

h(x1, x2(P ), x3(P )) dx1.

We will regard ¯ as an averaging operator, which has the property of being linear with respect
to functions of x3. Besides, we also have

∂h

∂x3
= ∂h

∂x3
. (23)

If we apply ¯ to both sides of equations (5), (16) and (17), we obtain

V 3 = g

f 2
, (24)

∂p

∂x1
=

(
2ηf ′

f 4

)
g′, (25)

∂p

∂x3
=

(
η

f 3

)
g′′. (26)

If we impose the no-slip boundary conditions g(0) = g(b) = 0, then g′ = 0 and hence
∂p

∂x1
= 0. So, from now on we will drop equation (25).
As we have seen in subsection 2.2, the function g(x1) must satisfy

g′′′ + k1g
′ = 0, (27)

where k1 = − 2
3f 3

(
1
f 3

)′′
. Equation (27) is equivalent to

g′′ + k1g = k2

for some constant k2. The solution of this equation satisfying the no-slip boundary
conditions is

g(x1) = k2

k1

[
1 +

(
sinh α(x1 − b) − sinh αx1

sinh αb

)]
, (28)

where k1 = −α2. The averages of g and g′′ are thus

g = k2

k1

[
1 + 2

(
1 − cosh αb

αb sinh αb

)]
, g′′ = −2k2

αb

[(
1 − cosh αb

sinh αb

)]
.

Using these formulae, we obtain

V 3 = f

η

(
g

g′′

) (
∂p

∂x3

)
= bf

2ηα

[
sinh αb

1 − cosh αb
+

2

αb

] (
∂p

∂x3

)
.

Therefore, Darcy’s law is

V 3 = bf 2

2ηα

[
sinh αb

1 − cosh αb
+

2

αb

]
(grad p)3.
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If we substitute into the above formula the power series expressions for the hyperbolic
sine and hyperbolic cosine, we get after some manipulation

V 3 = −b2f 2

η

[(
1
3! − 2

4!

)
+

(
1
5! − 2

6!

)
α2b2 + · · ·

1 + 2α2b2

4! + 2α4b4

6! + · · ·

]
(grad p)3, (29)

where α2 = 2
3f 3

(
1
f 3

)′′
.

The important facts about the above formula are as follows:

(i) It is a generalization of Darcy’s law for the flat, Euclidean space. Darcy’s law in this
particular case is obtained by setting f = 1 (and α = 0) in (29).

(ii) It is defined for arbitrary conformal factors f , even for the ones for which the
corresponding symmetric unidirectional flows do not exist!

In the case of a hyperbolic 3-space of curvature −K , we have

α2 = 4Kf 2 = 4K

(1 +
√

Kx3)2
.

Since x3 > 0, this expression is less than or equal to 4K , and thus a near-zero choice of
curvature will make α2 uniformly small.

5. Summary and concluding remarks

In this paper, we have considered the generalization of fluid flow to non-Euclidean spaces by
obtaining Stokes equation for symmetric unidirectional flows in a smooth orientable manifold
of dimension 3. We have also found the conditions under which Stokes equation is separable.
As examples we recovered Stokes equation in R

3 with the Euclidean metric both in cylindrical
and spherical coordinates. This was also done for R

3 with Minkowski metric. We studied then
the case of a flow in R

3 with a conformal metric and found that a restriction on the conformal
factor is needed in order to have non-trivial solutions of Stokes equation. This restriction rules
out spaces of constant curvature such as the hyperbolic 3-space. The existence of symmetric
unidirectional flows was addressed and a condition on the manifold metric established for
Stokes equation to have solutions. These conditions rules out symmetric unidirectional flows
in conical and toroidal geometries. In the conical case, the problem seems to come from the
curvature singularity at the cone vertex. In [20], this problem was avoided by cutting out the
vertex in order to provide the inlet for the flow. Darcy’s law was finally obtained for the cases
of two pseudo-spheres in Minkowiski space and for two parallel planes in R

3 with conformal
metric. The latter case considers even the case where symmetric unidirectional flows are not
possible. A series expansion of Darcy’s law for small values of the parameter of separation of
the two parallel planes recovered Darcy’s law in Euclidean space in the unit conformal factor
limit.

Although real Laplacian growth processes including viscous fingering, diffusion-limited
aggregation [25] and dendritic solidification [26] sometimes occur on curved surfaces, such
as cell membranes or porous rock formations, the theoretical studies on these models mostly
assume a flat Euclidean surface. Overall, the influence of a curved substrate has been largely
neglected in the literature. In this sense, the results we present in this work add a welcome
versatility to the traditional viscous fingering problem. Our purpose is not only to study
growth on a particular background shape, but more generally to be able to explore the effects
of the local surface geometry on pattern formation. The rigorous derivation of Darcy’s law
and the establishment of the conditions for symmetric flows in curved spaces are basic initial
requirements for the development of systematic ways of controlling fingering instabilities by
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geometric means. So, this study is the starting point for the investigation of key nonlinear
aspects of the Saffman–Taylor problem such as finger competition and finger tip splitting in a
variety of curved Hele–Shaw geometries. It is hoped our work will motivate other theoretical
and experimental groups to examine how geometric and topological features may impose
restrictions on the shapes of the patterned structures formed in viscous fingering and other
physical systems.
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